Applications of Exponents - Working with Formulas

Simple Interest: $\quad A=P(1+r)^{t} \quad$ (Used when interest compounded annually)
Compound Interest: $\quad A=P\left(1+\frac{r}{n}\right)^{n t}$ (Used when interest compounded other than annually)

$$
\text { Where: } \begin{aligned}
A & =\text { Ending Amount } \\
& P=\text { Beginning Amount } \\
r & =\text { interest rate (in decimal form) } \\
n & =\text { number of compounding periods in a year } \\
\mathrm{t} & =\text { number of years }
\end{aligned}
$$

Simple Interest Examples:

If you invested $\$ 1000$ in an account earning 8% per year, compounded annually, how much will the account contain after 5 years?

If you invested $\$ 500$ in an account earning 4% per year, compounded annually, how much will the account contain after 8 years?

Compound Interest Examples:

If $\$ 6,000$ is deposited in an account paying 5% compounded quarterly, then what amount will be in the account after 10 years?

If $\$ 7,000$ is deposited in an account paying 8% interest, compounded monthly, then what amount will be in the account after 5 years?

Comparing Simple and Compound Interest:

Suppose you decided to loan $\$ 1000$ to a person and decided to charge them 4% interest. Calculate the amount in the account after 3 years if the interest is compounded in the following ways:
a) Compounded Yearly:
b) Compounded Quarterly:
c) Compounded Monthly:
d) Compounded Weekly:
e) Compounded Daily:
f) Which way would you choose to compound the interest? Why?

